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The correlation dimension for the isokinetic Lorentz gas is calculated for hard 
disks using nonequilibrium molecular dynamics simulation. The trajectories 
are confined to a strange attractor embedded in a four-dimensional phase 
space--the additional degree of freedom having not been included properly until 
this work. This degree of freedom accounts for the explicit time dependence of 
the system (as quantified by the moving periodic cells under shear) and is 
significant because the collisions tend to synchronize with the periodic change 
of symmetry of the lattice at high shear rates. 
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shear flow; hard disks. 

1. INTRODUCTION 

Nonequi l ib r ium molecular  dynamics  s imulat ions of p lanar  Couet te  flow 
using the S L L O D  algor i thm TM 21 have successfully predicted non-Newton ian  
viscosity, pressure, and normal  stress difference as a function of shear rate. 
The S L L O D  algor i thm correctly incorpora tes  the external  shearing field 
which prevents the a t ta inment  of an equil ibr ium state by main ta in ing  a con- 
stant velocity gradient.  This external  field cont inuous ly  performs work on 
the system, and the resulting heat  is removed or  added  using the Gauss ian  
isokinetic constraint ,  so that  a nonequi l ibr ium steady state can be achieved. 

Recently there has been an emphasis  toward  the bet ter  character-  
ization of the nonequi l ibr ium steady state using the descr ipt ion offered by 
fractal analysis. In simple terms, s ta t ionary  nonequi l ibr ium flows develop 
by generat ing "mult i f ractal"  s t range a t t rac to r  objects of zero volume in the 
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phase space available to the system. One way to study the phase space 
contraction is through the Lyapunov spectrum of the steady-state flow. The 
Lyapunov exponents describe the time-averaged rates of expansion and 
contraction of a Lagrangian hypersphere made up of comoving phase 
space points. The principal axes of such a hypersphere grow, or shrink, 
exponentially fast with time, and the corresponding set of phase space 
growth and decay rates is called the Lyapunov spectrum. For dissipative 
systems the sum of Lyapunov exponents is negative and gives the rate of 
the phase space volume contraction. This method was used to quantify the 
phase space contraction for a one-dimensional conductivity of a particle in 
a periodic potential, t3) the soft-disk shear flow obeying SLLOD equations 
of motion, t4" 5~ boundary-driven shear flow with thermostatted boundaries, t6~ 
and color diffusion, tT"s~ The information dimension of the attractor 
representing the steady state can then be found using the Kaplan-Yorke 
conjecture, tgl The Lyapunov spectrum approach was favored because it has 
been linked to the transport coefficients t4'71 and combined with the sum 
rule tS~ could provide an alternative method for calculations of viscosity in 
thermostatted sheared systems. 

Alternatively, the generalized dimensions of an attractor can be found 
using basic algorithms which in the end reduce their calculations to 
elementary box counting. This approach becomes prohibitively expensive 
for systems with even a few (more than 4) degrees of freedom, and there- 
fore only the simplest systems have been characterized: color diffusion in 
the two-dimensional Lorentz gas ~~ and planar two-body Couette flow. t"~ 
The generalized dimensions of these attractors have been shown to 
decrease as the system is driven arbitrarily far from equilibrium because 
the behavior of the system becomes more ordered due to biasing by the 
shearing field. The "multifractar' form of the attractors is a consequence of 
the local variation of the fractal dimension in space. 

In this paper we aim to characterize the attractor of the simplest 
sheared system, the hard-disk Lorentz gas, including an additional degree 
of freedom which enters the picture as the consequence of the system being 
nonautonomous. 

2. T H E  S Y S T E M  

The simplest nontrivial shearing system is one of two hard disks obeying 
the SLLOD equations with periodic "sliding brick ""'2" 12~ boundary condi- 
tions. This system can be viewed from a frame fixed in space, or alter- 
natively from a frame fixed on one of the particles. In the latter case, one 
of the particles can be regarded as a disk of radius tr forming a periodic 
lattice of scatterers, and the other is a point moving at velocity v 2 -  Vl (and 
the peculiar momentum p = P 2 -  P,) and scattering throughout the periodic 



Correlation Dimension of Sheared Lorentz Gas 1047 

lattice. Due to the moving periodic boundary conditions, the lattice of 
scatterers changes its symmetry periodically from triangular to rectangular. 
This is the Lorentz model of isothermal shear flow. t~3~ 

The SLLOD equations for the two-body Lorentz system (with units of 
mass chosen so that the mass of the moving disk is equal to unity) read 

.'~= p.,.+ yy 

.9= P" (1) 

, b , - = F , - y p : . - ~ p . ~  

~0.,. = F:. - ~p ,. 

where p = P 2 -  P~ is the relative momentum of the disks and r = (x, y) their 
relative position vector. The parameter 1' is the shear rate (l'=Ou.,-/OY, 
where u is the streaming velocity) and ~ is the time-dependent Gaussian 
"friction coefficient" which ensures the conservation of the kinetic energy at 
all times, 

~(t) = (F- p - yp.,. p:.)/p2 

F(r) is the force between the disks, and in the case of hard disks it is zero 
for the distances r > ~  and infinitely repulsive for r~< a, where a is the 
diameter of the disk. 

The two-dimensional sheared Lorentz gas thus apparently has three 
degrees of freedom because the center of mass, kinetic energy, and the total 
momentum are the constants of motion. The degrees of freedom for the 
hard-disk sheared Lorentz system are conventionally chosen as the position 
coordinates of the point particle (x, y) and the polar angle 0 of the relative 
momentum p with respect to the x axis. Between the collisions there is no 
interaction F between disks and the SLLOD equations reduce to 

O = ~ sin 2 0 

= p cos 0 + D' 

9 = p sin 0 

and they can be solved analytically to give "3~ 

cot O(t )=cot .  O o - y t  

x ( t ) = X o +  y o y t - P - c o t  0 In 
), 

y ( t )  = Yo + p In tan(0/2) 
y tan(0o/2) 

(2) 

1 1 ) (3) 
tan(0/2) 2p s in0 sin 0o 
tan(0o/2) 
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However, there is an additional motion which we need to specify in 
order to be able to reproduce the behavior of the system, and that is the 
relative motion of the neighboring scatterers as measured by the position 
zt of those scatterers (see Fig. 1 ) 

d(  t) = mod(do + 7Lt, L)  (4) 

The equations of motion (1) are nonautonomous through the use of 
periodic boundary conditions in the simulation program: the introduc- 
tion of the new variable A allows Eqs. (1) to be transformed into an 
autonomous set. Thus the system has four degrees of freedom and therefore 
the attractor is embedded in four-dimensional space. The four variables can 
be chosen as the distance of the point particle from the center r, the polar 
angle of the position fl, the direction of the relative momentum 0, and the 
position of the neighbours zl (see Fig. 1). In previous calculations of the 
generalized dimensions of this system t4"5" 111 the variable A was ignored, i.e., 
it was assumed that the probability of the collisions would not depend on 
the position of the neighbors in the case of purely repulsive potentials with 
a cutoff, t4~ That assumption was justified by the fact the particle does not 
interact with particles in the neighboring periodic cells, that zi does not 
explicitly depend on any of the other phase space variables, and that its 
time dependence is piecewise linear. It was nevertheless recognized by 
Hoover et aL 16' ]0.14) that periodic time dependence of the planar shear flow 
should be taken into account. We propose to show that zl is indeed a rele- 

( 
Fig. 1. Definition of phase space variables. 
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vant variable, that the explicit periodic time dependence it induces in the 
system causes some synchronization of collisions with the certain positions 
of the neighbors LI, so that the resulting fractal dimension of the attractor 
is not simply larger by 1 than the dimension with d ignored. 

3. THE C O L L I S I O N S  

In. Eq. (1) the collisional momentum transfer is complicated by the 
isothermal restriction. In the equation for the rate of change of momentum, 
the term which causes the momentum change of an isokinetic system is 
nonlocal, depending both on position and momentum itself. An exact 
method for solving this type of collision in the limit when the force between 
the particles goes to infinity was described by Kratky and Hoover ~15~ for 
the Evans-Gillan equations of heat flow. In our approach the constant 
force is allowed to increase to infinity, causing the time of collision e (while 
the point particle is inside the scatterer) to go to zero, keeping the product 
Fe finite. The length of the infinitely short time interval e is determined by 
the condition that the distance of the point particle to the origin of the 
scatterer at the beginning and at the end of the collision has to be equal 
to a. 

Using this criterion in Eq. (1) gives the momentum Pr after the colli- 
sion both in the equilibrium and in the sheared isokinetic case. 

3.1. Equ i l ib r ium Case 

Let us compare the equilibrium isoenergetic and isokinetic scatterings 
of a point particle by a constant radial repulsive force F acting only within 
a sphere of radius a. 

In the isoenergetic case the magnitude of the momentum changes 
within the field as a part of the kinetic energy is converted into potential 
energy and vice versa, but the total energy is conserved. If the scattering is 
isokinetic, the momentum is not allowed to change its magnitude, only its 
direction. The equations of motion for the two cases are 

lsoenergetic Isokinetic 

= p.~ .~ = p.,. 

P =-P.,, P = py 

p x = F  x p x = F  x F .p  
r r p2 Px 

~b,.=Fy p , = F y  F . p  
r " r p2 Py 

(5) 
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Although the equations of motion for the isokinetic collision are quite 
different from the ones in the conventional isoenergetic case, the isoenergetic 
and isokinetic trajectories of point particles calculated from the equations of 
motion in the constant radial repulsive field coincide in the hard-disk limit 
(as F ~  oo). We shall prove this result below. 

The time 5 the point particle spends inside the repulsive field depends 
on the strength of the field F and the initial momentum of the particle p~. 
We assume that in the hard-disk limit, i.e., when F ~  oo, the time 
e(F, Pi) --* 0 in such a way that the product Fs(F, pi) stays finite, 

lira F.e(F, p~) = A(p;) < ov (6) 

Within the infinitely small time 5(F, p/) the momentum changes from 
its initial value Pi to the final value pj. We shall look at the change of the 
radial component of the momentum Pr from Prl to Prf and tangential com- 
ponent p, from p ,  to P,s during the isokinetic collision. The equations of 
motion for the radial and tangential components of the momentum are 

/~,= r ( l  p Z,~ + p2_  ~ 
--p2] r r pr 

(7) 
F 

t~, = -~-~ p r p , - r  p, 

where r = (x2+ y2)m. If the particle enters the repulsive field at the time 51 
and leaves at time 52 = 5~ + 5(F, Or;), the equations of motion (7) have to be 
integrated over the time interval 5. We are looking for the solution in the 
limit when F ~  o0, e = 5 2 -  5~ ~ 0, and in that limit the contribution of the 
terms which do not contain F can be neglected because the function under 
the integral is then finite and is integrated over an infinitely short time 
interval. Therefore, in the limit F ~  o0, 5 ~ 0 the evolutions ofpr  and p, are 
governed by the equations 

b r = F  1-~-~ and t O , = - - ~ p , p ,  

with solutions 

p,(t) = p tanh(Ft/p) and p,(t) = p/cosh(Ft/p) (8) 

so that 

p2 + p2 = p2 = const. 
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In particular, 

Pri = P tanh(Fel/p) P t i  = p/cosh(Fej/p) 

P~S = P tanh(Fe2/p) pc = p/cosh(Fe2/p) 

In the equilibrium case pr is also equal to the radial velocity in the 
system of units where m = I. The condition on the integration time e is that 
the total change of the distance from the center must be zero, i.e., the 
particle must leave the circular region of the repulsive field at the same 
radial distance as it had entered it. This means that the area under the p,(t) 
function in the interval (e~, e2) must equal zero 

f? dr = pat) dt (9) 
I 

which has a nontrivial solution e~ = - e 2 ,  P~j= -P~i  and the total change 
in the radial component of the momentum is Apr= -2pr~ just as in the 
isoenergetic case. 

3.2.  S h e a r e d  C a s e  

To find the solutions for the isokinetic collisions of the Lorentz gas we 
have to solve the set of SLLOD equations (1) for the constant radial 
repulsive field F in the limit F--* co at finite values of 3~. Here the time spent 
within the field F depends not only on the initial radial component of the 
momentum Pr;, but also on the polar angle fl of the collision. The product 
Fe(F, Pri, f l )  still stays finite in the hard-disk limit (F--* oo, e --* 0). 

Again, let us consider the rate of change of the radial and tangential 
components of the momentum, 

/ ~ r = F (  1 - P~+?P"PYp2] - - -~--P' -YP'  + p 2 _ p  r 

(~o) 
P, = - F P ' P '  VP> ' y  + YP~P"'P,- P, 

In the limit F--* ~ ,  e--* 0 the terms which do not contain F can again 
be neglected. This means that during a hard-disk collision with shear the 
momentum obeys the same differential equations (8) as in the equilibrium 
case, only with different boundary conditions. The condition which gives us 
the value of pry= Pr(e2) is given by (9), with the radial velocity no longer 
equal to the radial momentum, but rather 

f = p , +  ?xy/r (11) 
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In the hard-disk limit the collision happens at one point at the distance 
r = a from the center, and Vxy/r becomes a constant 7Xo yo/tr, where Xo and 
Yo are the coordinates of the point of collision (xo 2 + yo 2 = trz). The condi- 
tion (9) now becomes 

iii~Iptanh(ff-~)+Vx~Y~ =0 

and the shaded areas above and under the curve on Fig. 2 must be equal. 
This gives an implicit equation for Prl, 

In(;-P://P2~ 7x~176 
p~,/p2,/= ~p L\l-pv/p)/ l~/J (12) 

The momentum after the collision can be evaluated from (12) numeri- 
cally. In the limit 7---'0 the right-hand side of Eq. (12) vanishes and Prl 
reduces to the equilibrium solution. Also, the solution of (12) is obviously 
symmetric to time reversal, as is required of the solution to SLLOD equa- 
tions. The described method for finding the momentum after a hard-disk 
collision can easily be generalized to three dimensions and it can be used 
also for systems with more particles if one assumes that there is only one 
collision happening at each instant. 

The benefits of the hard-disk approximation are, apart from describing 
the exact limiting behavior, in the increased speed of calculations, although 
the hard-spring or repulsive WCA potentials give a more realistic picture. 
The solution is obtained only as a numerical solution of the algebraic equa- 
tion r =tr,  but it is nevertheless about 50 times faster than the previous 

Fig. 2. 

P -; prt 

..~ pm 

~..1,x~yo ........................... . .................... 

o 

~- -p/2 

.p P ' ~  

-6 -~I al -2 (] 2 a2,4 6 
Ft /p 

Isokinet ic  coll ision with shear: the shaded area under  the ~xoYo line must  equal  the 

shaded area above it (a I = Fet/p and a2 = Fe2/p). 
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numerical integration of the SLLOD equations using a stiff repulsive 
potential, and is more suitable for the calculations where one has to 
evaluate the trajectory through a large number of collisions. 

3.3. The Limitations of the Hard-Disk Approximat ion 

The limitations of this method are that the infinite hard disks collide 
and separate only for ),t~/p ~< 2. For larger shear rates ay/p > 2 the point 
particle remains with the scatterer if it hits it at certain values of angle fl, 
due to the strong shearing field across the cross section of the scatterer. 
This behavior for yo/p > 2 can be found from the following argument: if the 
particle is to bounce off after a collision, its radial velocity after the colli- 
sion must be positive. In other words, for every angle fl at collision there 
must exist an angle 0 such that the inequality 

t:(O, fl)]~=,, > 0 (13) 

can be satisfied. Figures 3a and 3b show the (0, fl) plane at the collision, 
where r = a. In the gray regions f < 0, and in the white regions f > 0. The 
hard-disk collision represents a mapping of points in gray regions with 
f < 0 onto white regions with f > 0 along a horizontal line, because during 
a hard-disk collision the position of a particle on the circumference of the 
scattering disk is not allowed to change. When ya/p ~<2 (Fig. 3a) every 
point in the gray region can be mapped on some point in the white region 
along a horizontal line. When 7alp > 2 there exist intervals of fl (shaded on 
Fig. 3b) such that all corresponding angles 0 give f < 0 .  If a point particle 

Fig. 3. (a, b) The hard-disk collision as a mapping in the (O, fl) plane for ytr/p= i.5 and 
ya/p = 3, respectively. The angle 0 e  [0, 2rt] is on the abscissa and the ordinate is fie [0, 2hi .  
The mapping goes horizontally from the gray regions where ~: < 0 to white regions where ~ > 0. 
Forbidden collisions are in the shaded parts of the gray regions. (c) The dependence of the 
.forbidden fl intervals on ~a/p in polar coordinates: ya/p is the polar axis and fl is the angular 
variable. Forbidden angles fl for 7a/p > 2 are in the shaded area. The symmetric area enclosed 
by the dotted lines represents values of fl in which collisions cannot occur. 

822/76/3-4-20 
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collides with the scatterer at an angle fl from this interval, it cannot bounce 
off. If, on the other hand, the interaction potential between the particles is 
very steep but smooth, the point particle can still penetrate the scatterer 
infinitesimally and "slide through," exiting in an allowed interval of /3 
(dashed line on Fig. 3b). There are also intervals of/3 where f > 0 for every 
0 and the collisions cannot occur (between the dotted lines on Fig. 3b). 
These effects can be seen if we look at the probability distributions of the 
angle/3 at r = tr at the beginning and at the end of collision for soft disks: 
for ),a/p > 2 these distributions differ considerably, the former having zero 
probability at the "impossible" intervals and the latter showing zero 
probability at the "forbidden" intervals. The dependence of the lengths of 
"forbidden" and "impossible"/3 intervals on ytr/p is shown on Fig. 3c. 

4. PROBABILITY D ISTRIBUT IONS 

The probability distributions for variables 0, /3, and A at r = tr, i.e., at 
the collision, are shown on Fig. 4 for four different values of shear rate 
ytr/p. The distributions were evaluated for the reduced density of ptr'- = 0.4 
after 1.5 million collisions. The distribution of the angle 0 before the colli- 
sion becomes more nonuniform as the shear rate increases, showing more 
localized values of 0 with the peaks closer to 0 = 0 and 0 = n favored as the 
yt term plays a more important role in Eq. (3) for larger ytr/p values. The 
peak of the distribution of the angle of collision /3 also becomes more 
pronounced and moves toward the asymptote of + M2 as the point particle 
moves more horizontally at larger ~, values due to larger streaming velocity. 
The distribution of 0 after the collision more closely resembles the distribu- 
tion of fl as the momentum after the most probable collisions (for fl in 
second and fourth quadrants) becomes almost radial (see Fig. 2). Not only 
do the angular distributions of /3 and 0 before and after the collision 
become highly nonuniform due to the shear-induced biasing, but also the 
distribution for A shows heavily populated peaks for moderately sheared 
systems (ytr/p > 0.75). This shows that the collisions "favor" certain A posi- 
tions in that the collisions become synchronized with the periodic change 
of symmetry of the scatterers' positions as the shear rate increases. This 
result prompted a more detailed study of the correlation between A and x, 
y, and 0 at collisions. 

5. POINCARr SECTIONS OF THE A T T R A C T O R  

Because the trajectory in phase space between the collisions is piecewise 
smooth, we can eliminate one of the dimensions in our four-dimensional 
phase space by looking at the density of points at the intersection of the 
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07/p=O. 

0 0 0 
O'Y/p=0.5 

0'7/p=1. 

orT/p=1.5 

0 before the collision [~ 6 after the collision A 

Fig. 4. Probability distributions for each of the phase space variables at the collision (r = tr) 
in arbitrary units. The angular distributions are shown on the circumference of a unit circle 
to emphasize their periodicity; the range of variable dr is between 0 and L. 

a t t rac to r  and some three-dimensional  hyperplane.  The resulting Poincar6 
section is now embedded  in three-dimensional space and so is easier to 
visualize. 

The easiest cross section to find is that  at r = a ,  which consists of 
points  defined by triplets (0, fl, d) ,  i.e., the direct ion of momentum,  posi t ion 
of the point  particle,  and  posi t ion of the neighbor ing cells at the time of the 
collision. Dur ing  the collision the m o m e n t u m  changes its direct ion discon- 
t inuously from 0 (before the collision, where f < 0) to 0' (after the collision, 
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Fig. 5. Three-dimensional  one-sided Poincar6 sections of the a t t rac tor  at  r = a for different 
values of the paramete r  ~,a/p. 
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Fig. 6. Projections of the Poincar~ sections from Fig. 5 onto the (0, ,8) plane. 
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where ? > 0), so that the collision itself can be considered to introduce a 
mapping from a set of points (0,/3, A) at r = tr before the collision (with 
i" < 0) to the set of points (0', fl, zl) at r = tr after the collision (with f > 0). 
The two sets of points are one-sided Poincar6 sections. These precollision 
and postcollision Poincar6 sections, each containing a time series of 
250,000 points, are shown on Fig. 5 for three different values of ~a/p. The 
attractor for the sheared Lorentz gas system is a four-dimensional object 
which consists of piecewise smooth trajectories in phase space starting from 
a set of points (0', fl, d)  at r = tr with f > 0 and finishing at the set of points 
(0, fl, A ) at r = tr with f < 0 before the next collision. 

If all valuds A were equally probable for all collisions, the point clouds 
of the Poincar6 sections would have the same density throughout the range 
of zl values. However, the plots in Fig. 5 unmistakably show correlations 
between the angular variables and zl. In addition these correlations 
strengthen as ~tr/p increases from 0.5 to 1.5. 

Closer inspection of the detailed layering in the precollision Poincar6 
section for ytr/p= 1 reveals the dependence of (0, fl) on A. Indeed from 
Fig. 4 it can be seen that the density of points in the Poincar6 cloud 
changes according to the A value. An examination of the precollision sec- 
tions of Fig. 5 gives the actual stratification of this effect as the cloud density 
changes through (0,/3, A) values. The A dependence of the precollision 
cloud is quite complicated, but the pattern at different A layers is suf- 
ficiently different to associate these pattern changes with different types of 
collisions (0, fl) occurring at different d. Consequently the average interval 
between certain types (0, fl) of collisions becomes commensurable with the 
period of the symmetry change of the scatterers' positions with increasing 
shear rate. Thus A is an important a degree of freedom, as much as the 
polar angles 0 and ft. 

6. CORRELATION D I M E N S I O N  OF THE A T r R A C T O R  

The correlation function measuring the spatial correlation of n points 
in a point cloud is defined as the fraction of pairs of points whose relative 
distance is less than e, 

C(e)=,limnl--5 ~ H ( e - l r i - r j [ )  (14) 
L j ~ I  

Here H is the Heaviside step function, H(x) = 0 if x < 0 and 1 if x ~> 0. 
The correlation dimension v is the exponent defining the critical behavior 
of correlation function for small e, tl6~ 

C(~)= ~-" (15) 
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For small e the graph of log C(e) vs. log e becomes linear, and v can be 
found as the slope of the line. When Eq. (14) is used to measure the 
correlation dimension of an attractor, the points ri on the attractor are 
chosen at random according to the probability density associated with the 
attractor. The vectors ri are then the positions of points in phase space (not 
configurational space). An efficient algorithm (~6) was used to calculate the 
correlation dimension on a Connection Machine CM-2. In our case the 
points in (14) are the points on the precollisional or postcollisional 
Poincar6 sections found from a single trajectory, and vectors r; represent 
the triplets (0,/?, d)  at r =  a just before or after the collision. A resolution 
for e between 2-6  and 2-15 was given by the evaluation of the coordinates 
(0,/~, zt) for 2 ~9 collisions. A box-counting algorithm for the fractal dimen- 
sion (capacity) required an estimated 2 2s collisions for the maximal resolu- 
tion of 2-s .  ~1~ The correlation dimension depends on the density of the 
points on the attractor. If the phase space is divided into N bins of side 
length e, a definition of v equivalent to (15) can be obtained in terms of the 
probability of visiting these different bins by a typical trajectory when the 
grid is refined in the limit, 

v =  lim (16) 
~-o In 

where N is the total number of bins and Pi is the probability of the ith bin 
being visited. Definitions (15) and (16) are entirely equivalent. 

We found the correlation dimension of the Poincar6 sections before 
and after the collision and the results are shown on Fig. 7. On the attrac- 
tor, the points of the two Poincar6 sections are connected by piecewise 

Fig. 7. 

2 ;> 

B 
B 

n 
[] 

n g 

B 
[] 

[] before 
[] after 

n 
I= 

m 
n g g g  

0,0 0.5 O'7/P 1.0 1.5 

Dependence of the correlation dimension of the Poincar~ section before and after the 
collision on shear rate. 
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smooth trajectories representing the behavior between the collisions, which 
means that the difference between the correlation dimension of the whole 
attractor and the correlation dimension of the Poincar6 section should be 
close to unity. Also, because the time dependence of the system between the 
collisions is analytic (except for the discontinuities due to boundary 
crossings) and because the system is deterministic, i.e., the number of 
points in the Poincar6 sections is conserved, we expect the dimensions of 
the two sections to be the same. The results show the dimensional contrac- 
tion of the attractor with the increase of shear rate, from 4 very close to 
equilibrium (?~alp= 0) to less than 2.5 for ytr/p > 1. The limiting value of 
the dimension of the attractor as y ~ 0 is 4, but in reality the equilibrium 
value cannot exceed 3 because in that case zl is constant. The limiting value 
of 4 can then be interpreted as the dimension of a set of two-dimensional 
Poincar6 sections corresponding to all possible configurations of the 
scatterers' lattice, i.e., to all possible values of A. 

The importance of zl can be summarized from the projection of all 
points of the Poincar6 sections of Fig. 5 onto the (0,/3) plane (see Fig. 6). 
This gives the Poincar6 section of the Lorentz gas attractor with A com- 
pletely ignored. The results for the full three-dimensional Poincar6 sections 
and the projections are compared on Fig. 8. With no correlation between 
the collisions and A, the difference between the two correlation dimensions 
would be unity, as it is for shear rate approaching zero. But as aT/p 
increases, the difference decreases such that for the Poincar6 sections before 
the collision (Fig. 8a) the two dimensions coincide when the dimension of 
the full Poincar6 section becomes less than 2. The reason for this can be 
seen from the following: if the dimension is less than 2, points of the 
observed set (at least to the give n resolution) lie on a collection of lines 
rather than a surface in three-dimensional space. The projection is then 
also a set of lines provided the lines are not perpendicular to the plane of 
projection. 

After the collision the difference between the dimensions of the 
Poincar6 section and its projection decreases below unity with the increasing 
shear rate, but beyond a),/p--0.75 that difference is remarkably constant 
(Fig. 8b). This can be qualitatively explained from the collision law for 
hard disks: if the collisions occur in the second or fourth quadrant, where 
they are the most probable, then the expression ),xy is positive, which 
pushes the direction of final momentum toward radial (see Fig. 5). Thus as 
a~/p increases, a larger fraction of the collisions having initial momenta at 
the same angle fl come out of the collision nearly radially and are counted 
in the same two-dimensional bin o.f the projection after the collision. But 
if we include the A axis in the coordinate system, we find that the points 
that fall into the same bin in the projection are found in cubes with dif- 
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ferent A, i.e., some "lines" of the Poincar6 section after the collision are 
nearly perpendicular to the projection plane. Thus, the difference between 
the correlation dimensions of the projections before and after the collision 
increases with the shear rate (Fig. 9). The trajectories associated with the 
projection of the Lorentz gas attractor onto the three-dimensional phase 
space (with A ignored) start from an object of lower dimension (projection 
after the collision) and end on an object of higher dimension (projection 
before the collision). If the dimension of the Poincar6 sections is to be con- 
served throughout-the attractor, it is necessary to include the additional 
degree of freedom A. 

Figure 9 also shows the ~ dependence of the correlation dimension for 
a soft-disk Lorentz system studied by Morriss. ~tt~ He calculated a sequence 
of generalized dimensions for the projection of the attractor onto a three- 
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dimensional phase space (ignoring A) using a box-counting algorithm for 
a collection of points on the phase space trajectory separated by a small 
time interval dr. His correlation dimension less unity should be close to our 
correlation dimension of the projection. In fact, it becomes less as the shear 
rate increases. We attribute the difference partly to the use of the relatively 
soft WCA potential in Morriss' work, and partly to the nonuniform 
"natural measure ''(9) along the trajectory, which might result in the correla- 
tion dimension of the piecewise smooth line being less than unity because 
of the probabilistic nature of the correlation dimension. 

7. CONCLUSION 

The results presented here show that the correlation dimension of the 
attractor for the two hard-disk sheared system, when properly embedded in 
four-dimensional phase space, decreases with shear rate from 4 (close to 
equilibrium) to a value between 2 and 2.5 for ~,a/p> 2. It also shows that 
it is necessary to include a degree of freedom representing the explicit peri- 
odic time dependence of the flow to get a proper description of the system. 
One can get an idea of the role the mechanism of the sheared thermo- 
statted collisions plays in the collapse of the visited phase space on the 
strange attractor of zero volume by the following considerations: if we start 
with d = 0 and a uniform distribution of points in the (0, fl) plane before 
the collision, these are mapped by the law (11) onto a highly nonuniform 
distribution after the collision, where the previously homogeneous regions 
are squeezed, stretched, and overlapped, as expected. Such a nonuniform 
distribution of angles 0 and /7 serves as a set of initial conditions for the 
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trajectories between the collisions, ending in a nonuniform distribution 
before the collision. At this point the periodic time dependence of the 
moving boundary conditions enters the picture. The points are then again 
mapped onto the region f > 0 with increasing inhomogeneity at each step, 
until a pattern similar to Fig. 6 is obtained. After a large sequence of such 
mappings and evolutions have taken place, the fraction of the types of the 
collisions (increasing with the shear rate) which can be differentiated at 
a given precision will be on average periodic, with the average period 
commensurate with 1/•,, thus forming a beginning of a "devil's staircase" 
(see, e.g., ref. 17). In that case both the collisions and the moving boundary 
conditions would be responsible for the formation of the attractor. 
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